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A par~me~-de~~t system of d~~~~al equations on a plane, arising in 
the problem of 1~48 of stability of a periodic solntion close to k4 resonance, is 
analyzed, Its phase pattern typea are dtscdbed in the cam when Thea syrtem 

is &m+P- H~~~&xuuI. 

lo Equations in polar coordinate& Itw~shown~n~~ltbat 
it is necessary to study the bluffs of the phase pattern of the ~a~~ 

where Z= 5 -k iy is a point in the corn@@@ plane and 8, A, B arecompiex 
parameters, in order to desorfbe the phenomena arising from the loss of abler of the 
periodic solution. In the prusent paper WC describe the phase pattern types of (1. I), 
arising for small Be e and Re A. The main questions here are connected with as- 
certaining dispositions and the bifurcationa of the limit cyoles. 

Let us describe hriefly the connection between the stability loss problem and Eq, 
jl.1). Suppose that in a ~r~~-d~~~t differential equatim system there is, 
for certain parameter values, a periodic solution all of whose ~1~~~ lie in the 
unit disk. Suppose that under a variation of the parameters the solntion being exarnin- 
ed l-es stability in the following manner; a pair of complex-conjugate multtpliars 
intersect the unit circle9 while the rest lie in the unit disk. At the instant of stability 
loss and at instanta close to this bi~~a~~ necessarily take place in a ~~g~~h~ 
of the periodic solution being examirk& other periodic solutions and tw~~m~onal 
invariant tori are generated and dt*oppear. When the muitlpIier% Intersect the unit circle 
not too close to the points rl=& theae’bifurcations have been described in CL 21. The 
case of multiplies cIose to Ifid bar not yet bw studied fully. The motion ia a 
n~g~o~o~ of a periodic solution is studied by a~lyz~g tbs. normal form of the 
d~~~~l eq&ion syat~ around this solNo% If the ~l~~~e~ are close to z!% 
then when c~~c~g t&e normal form we need to take into account the 1:4 resonance 
between the motion with respect to the original periodic solution and the otcfiWi~S 
of the soIntions of the variation&l equationa around it. Then in the main appn>rtimat- 
ion Eq* (1.1) spltts off Into normal form. The parameter 8 ia it deaertbes the devia- 
tion of the multiplier from point t. A periodic solution corresponda to the equili- 
brium I = 0 , periodic solutions close to the original one but with a period approx- 
imately four timea larger correspond lo the other equilibria, and two-atonal 
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Bifurcation8 of the phuc pattern of an equation system 897 

invariant tori of the original equation system correspond to the limit cycles of (1.1). 
The bifurcations in a neighborhood of the periodic solution can be described by study- 

ing the phase pattern of (1.1). 
The parameter B in (1.1) can be made real by rotating the phase plane (z, &)* 

We denote t5 = Q + iz, A = --y - ia, B = fj . Following [l], we intro- 

duce symplectic polar coordinates p and q~ and we rewrite the original a. (I. 1) 

as the system 

P l = --aH/acp + 2p (CY - 2~~1, 9’ = aHlap (1” 2) 
(p = 12 t2/2, q = arg 2, 61 = zp - pa (a + fi sin 4~)) 

This system is invariant relative to a rotation of the phase plane through an angle n/2. 
We assume that IY # 0, p # 0. Then, +c and p can be made positive by revers- 

ing the lime directian and rotating the phase plane through an angle n/4. There- 
fore, wetakeitthat z>O, p>O. 

2. Phase pattern of the unperturbed problem (a= 
1p = 0). In what follows we examine the case of small (J and y. Therefore, 

at first we describe the problem’s phase plane for Q= Y = 0. For such Q and 

y system (1.2) takes the Hamiltonian form 

Using the integral 141 = con& it can be shown that the phase pattern of system 
(2.1) can be of the following three forms, depending upon the relation between para- 
meters a and fl. 

Fig. 1 

A) a > p. ‘Ihe phase pattern is shown in Fig. la. The four saddles have the 
coordinates p = PC = V*7/(cz + B), <p = IL/8 + lrd2 (n = I,* . .( 4); 
at the saddles ljT = h, = l/d$/(~ -k b). The four centers have the coordinates 

P = = ‘lpz/(CZ - g), rp = 3d8 + 9Vd2 (?& = i ,. . ., 4); 
A E Iz, = V,+/(a 

at these centers 

- S)* The origin too is a center. The separatrices form 
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two like ellipses with mutually pcrpsndi&ar major semiaxes. The separatrices divide 
the plane iuto the regions G;, G,, Gfs@ (n = 1,. . . ,4), filled with c traj- 
ectories. Any of the regioru Gin) till be referred to as region G,. The trajectory 
equatiom are fouad from the nlatitm W = h, = con&, where 
in region G,, - 00 < h < h, G,, and 

oGk<h, 
in region ho < h < ha in rEgioaGs. 

fn each of the regiau the trajectory is uniquely determined by the value of h. 
B) f3 > a > -6 (Fig. lb). The saddles are located just as for type A. A 

center is located only at the origin. In region 

Wh<hc. 
G,, filled with closed trajectories, 

C) a < -p (Fig, 1~). All trajectodes are closed and encircle the origin, 
and on them h > 0. 

3, Condition for the generation of a limit cycle, The 
limit cycles of a pert&M system (1.2) with small u W t must be sought ctofe 
to those trajectodes of the unperturbed system (2.11, along which the i&e&al Of the 
perturbation equals zero, i. e. s 

where L is a closed trajectory of (2.1) and the function p (cp) is taken along L 
(see Chapter XIIX in [3& Therefore, to study the disposition of the limit cycles we 
need to seek trajectories L satisfying condition (3.11, viz. t trajectorier from which 
l&nit cycles are generated. L& L lie&k G, andlet ET =h on L. By G” 
(h) we denote the regicm baud& by L. By passing Lo (3, I), with the aid of the 
Green’s formula, from foitcgration along L to iategra&n over i.? fh) ad by introd- 
ucing, following Cl], the function k, (h) e viz. s the square of the rad&s of inertia 
of region G* (h), we rewrite (3.1) as 

km (Is) = wD, w = “JguJy (3.2) 

k, (h) = a+$ , 11, m (W = s dP dv 
. 

The behavior of the roots of these equations as 
behavior of furxctions k, (h) . The graphs 

a function of w is determirked by the 
of functiona k, (la) (m = 1,2, 3) 

for various valuea of parameters a and fr are shawn in Fig, 2. The following state- 
ment describer, the necessary properties of these functions, 

Theorem l.l’,Ib?tthepharc~patPstaof(2.l)beoftypeA (a>p). Then 
the nature of the behavior of fhnctfuas &, (h) is deWmined by the w&b, Qf d& 

Al). If a/g > F;*, whete f, is aconatilnt de&ted below, g, SS 4.11, w 
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Fig. 2 

l) in their domains hs (h) and kb (A) imxcase mamtankally and 4 @I 
decreases menotonicslly as h grow k,’ (h) + 0 (m = 1,2, 3, the ptime de- 
noted the dedvative with tccpect to h); 

2) kl’ (h) --t +oo as h -+ h, - 0, k,’ (It) * --QO as h -+ h0 - 0, k,’ 
(@++a,as h+h&O; ko(h)-+-too adl h-+-m; 

31 k~. k) C ks &) < k, (kc). 
A% If ~<a&~&, then 
1) AC, (k) bat a zxdegenuate m&imum at some point hd : k*~(~ = 0, 

k,” (hd > 0, 4 (h) # 0 for k # hd; 
21 k,’ (4 + += a h--f h, - o; 

3) ks (ads > k (h); 
4) in other rerpcctr the behavior of k, is the same as in case Al. 
A*). If a/p - &, t$cn h+’ (h) tends to a finite negative limit as h -P- 

hc - 0;in other respucti the behavior of k,,, ft tie same as in cue Al. 
2’. Let the phase pattern of (2.1) be of type B (p > a > -p). Then kl 

behaves in the ssme way as in the patters for type A. 
3’. ~t~~~~of(2.l)beof~~~ (a< -&Then k,‘(h)>0 

and kr(h)++ooas h-t+00. 
In whpt foUows we shall denote w, - km (hJ (m = 1,2,3), rq, = 

:“pi;pw; = f¶ @d)* lb? CWd a@ > ke9 a@ = E*, & > a/$ > 1, 

- , and a/$< 4 tibccalledcare,Al, A*, A& Band C, 
rcqectively. 

III Theorem 1, E* = (3 + cos 8,) / (1 - co8 6,), where #* is lbe (obvious- 
ly single1 mot of the equatfoa tg $3 - 6 = n 
6 * 5x 1.352, g* s 4.11. 

CxaIlimd for 6 E (0, tt / 2); 

Thtorun 1 is proved in Sects. 6.1-6.4. 

4. Bifurcations of the limit cycles of the perturbed 
o y s t e m. Theorem 1 enables US to describe the Mftxcations of the roots of the 
equation k, 04 = ru and, hence, the bffiwati~ of the trajectories of the unper- 
tubed problem (2. I), gcuuating the &nit cycles of (1.2). The bifurcations are seen 
from the graph of k, (h) (Fig. 2). The following statement dcxribtr the bifurca- 
tions of the limit cycle3 of (1.2). 
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Theorem 2. Forspecified % #6 t, satisfying the~e~a~ti~ 7 # 0, 

BY=@ Q+Ia1, a/@#&, 
loI + Irl,- 

wecan find 6 > 0 such that when 0 < 

1) the bifiucatiau of the limit cyclu of (1.2) are the same as the bifurcationa 
generating the cycles of the trajectories of (2.1) for the same 01, p, z; 

2) the collectian of VahteS of parameter w, at which the bifurcatious take place 
incase AZ, viz., (O,w~y,wd’,w~‘,wQ’,w~r}~~~~eboundl l%--u)d’l< 

Cl (I 0 I + I Y I) (s = 1, 2, 3, a, d), where cl> 0 is independent of u and 
y. Similar asertions are valid for cases Al, B and C; 
3) when w # w,’ ail cycles are nondegenerate.. 
In part&alar, in case A2 the blfhrcaticwr as w grows take place ia the following 

manner, ~tcy~~do~t~wh~ ra<O. When w-0 alimttcycleis 
generated at the origin. It expands as P grows and when w = w{ it ttzr~ into q~ra- 
t&es, i.e., connects saddle singular points. Limit cyclea do not sritt V&MI ~1’ < 

10 < wd’ . A double limit cycle i;r geneWed in region Gs when UJ = Q’ . Under 
a further growth of w ib txmWit& cycle diverge. When w = w,’ on6 of them 
~~~~~c~~d~~~ ~eo~rcyc~~f~~w>~‘~d 
goesofftoinfinityas w fnCW. Four tymmetdc cycbs (toOp of wp9nrtrice& are 
generated wheu w = 1~~‘. As 10 growsfhmecyelesI&Qvcaw8yfkamtb 

become sm&ler, and when w = wd’ they disappear i& four f6?d located ln region 

Gs. Since the cycled are nondegeneraks when w # wd’ a change of 8WlIlty of 
this point takes place as the cycle branches off from the siq#ar poW ‘i’be bi- 
furcations of the limtt cyela are date&bad achy in cp# Al. B d C l 

Theywerepredicttdin[f~ TbepmafofTbcx8m2irbaedonTttsoram~aadtt 
carried out in the uual m+murbyuslngthebamdaf&rtiouccessorfunce-ian@,41. 
It is rather cubersome and L not given here, 

5. Pbatc prtternof the perturbed system., Iftheparturba- 
~~~~1.2)~~~lCi~~YS~~ (O<JaJ+fy[<l), ~~~~~~~~~ 
as compared tith the pattern of the unperturbed system (2.1). chongccr in t& fo&wing 
way. The uddlesore dispI@ed. The centcrs are &plWsd and turn into fact. The 

sepodriCjk8, in general, split up and cease to join siqalart poin& Limit cyclsr emerge. 
As t - lfOe the rem- trajectodea wind onto the foci and the limit.qclae or 
go off to ii&laity. The type of-the @use PattQm b ~~~~y deter* by tlxe dls- 
pcsition and the nature of the ttngarsrr polttts, separatrl~ md limit cyc&a. The 
disposition of the limit cycles has been dcscdbed in Sect. 4, When ro < -1 the 
foci are stable if y > 0 and u&able if y<O. ‘I’hiscaftbecs~~ by 

computing the eigenvaluct in the fist approximation with respect to U and y. 
The stabUity or ~~~ of the feci and the limit cycles for the ether valyes of w 
is ~~~ by uxslderlng the bi&xrcstW& 
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a 

Fig. 3 

a sirm~ltaneous change of signs of y and u stability changes to instability and vice 
versa. 

6. Proof of Theorem l. WeatsumethatthdPhslcpattunof(2.1)k 
of type A (a > b > 0). We omit the theorem’s proof for the cm when the 
phase pattern of (2.1) Is of type B or C, because it is a literal repetition of the 
arguments pree&ed below in Sect. 6.2 when descdbing the behavior of kl (k) for 
th+l&ktemoftypeA* In the computations for&e 

G,,, we drop the index m and write k, II, Is and G 
I t. m and ~‘n (h) (see formulas (3.2)). 

6.1. Behavior of k(h) in region 
der 

k’ = R I Ils, R = I,‘l, - I& 

where the prime denotes the derivative with respect to h. 

From the relation H = 7p - p’ (a + p sin 49) = 

P = P1,r = 'I, (7 r )/T) I u 

trajectorica from region 
(h) instead of km, I,, m,; 

GS. In Gs we con&- 

Letusrhowthat k’>O. 

h we have that 

(6.1) 

u = u (cp) = a + B sin 4q, Y = u (tp) = T* - wu tq) 

on the phase trajectory. Then 

cp+ 
I1 = s dpdq = s (Pa -PwP, Ia= s s!pdpdq-l= 

G(h) v- WO 
rp+ s (Pa2 - Pl") dT 
cp- 
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where g& are the limits of tbe variation of p, on the trajectory. Hence 

We pass from the two independeut ~t~ra~~ over the segment fq~_, cp, f to an 
integratioo over a squam, by introducing two variables of iutegratiua ~~ and ~)s 
and symmetrizing the integrand with respect to them. Then 

@f = ZJ (Qi), Vi = V (Qi)) 

We transform the integrand (we denote it r ) in order to show that it is nor&positive. 
we obtain 

Then R>O and #>O for %<hU%, ass+a&ed, Fr~@tbitsame 
expufoafwR itfamwstbat K(h)++oo as k+ir,+O. Cctapbffa 
show that k’ (kJ = (*2~)-~ (1 + a&) + o. 

6. 2. Behavior of k(h) in region 6. Iustead of shtdying 
k (h) dim&y, in Gl we comider the equattaa k (h) = w w&31 UC rmrrite 

(using f3* 2)) as 

(6.2) 

(6.3) 

where the limctiw P 01 cp) = pa (h, Q) haa been defined by formula (6.1). We 
examine the behavior of I (h, w) as a function of k for various w . 

L e m ma 1. If I’ (h, w) = 0 at some point h E (0, h,), then I”&, 
w) < 0 at this point. 

This lemma is proved below. 
Corollary 1. Foreach w ~reex~~no~e~an~e~~~ h6tii (0, hJ 

at which f’ (Is, w) = 0. lfsuch ape&at exiata, fkurctior3 I has ii n-generate 
maximum at it. 

Indeed, if two such points wee to exist, then by the lemma function 1 would have 
maxima at them. Then between them a minimum point would exist, which is for- 
bidden by the lemma. 



Bifurcatlom of the phase pattern of an equation system 903 

C or o 11 a r y 2. If I&, w) has a maximum, then as w changes this maxi- 
mum is continuously displaced and can vanish only at the endpoints of the interval 

- - (0, kJ. 
Let us now consider the behavior of 1 

I (0, w) =0 for any w and I (h,, q) 
Further, 

!+? 

at the endpoints of (0, &)- Obviously, 

= 0, where wl = la (h,) / I1 (12,). 

I’(h,w)= 1 (W-2&dcp 
0 

It can be shown that I’ (0, w) = 2nw / z. At the saddle points (when h = he 
and cp=n/8+nn/2 (n=1,...,4))@/LJh hasdngularitier. Itcanbe 
verified that I’ (h, W) -* --a~ bo h + h, - 0, if w< WI"2P,, and 

I’ (h, w) + +a0 as h--t h, - 0, if W > ut,. A finite derivative 1’ (h,, 
w)>O existswhen w=w2. 

Fig. 4 

The graph of I (h, w) for w = 0 is shown in 
Fig.4. As w grows the graphs corresponding to h # 0 
rise upward. The corollaries to Lemma 1 and the inform- 
ation on the behavior of 1 at the endpoints of (0, h,) 
enable us to describe the evolution of the graph as W 
varies. obvtously , for 0 < w < wi and w = we 
the function I (h, IV) behaves as shown in Fig. 4 by the 
middle and upper curvet, reqectively. Hence, in part- 
icular, it follow8 that wt > WV From Fig. 4 it follows 
further&&for O<W<WI 4. (6.2)hasasingle 
root on (0, h,) and that I’ (h, w) < 0 at this root. 
Equation (6.2) has no roots on (0, h,) when w < 0 
and w > wi . 

Now for any h E (0, h,) we introduce w = k (h) 
= I, (h) / I, (h). Then I (h, w) = 0 and by the 

preceding 

k’ V4 = -(wIl’ - I,‘)‘/ I, = -I’ (h, 10) / II > 0 

As h+hC -0 we have w + WI and k’ (h) * $_a~. It can be directly 
verified that k’ (0) = 1 / z > 0. Consequently, in GI the function k (h) 
behaves as was described in Theorem 1. 

Proof of Lemma 1. Let z’ (h, W) = 10zl’ - I,’ = 0. Then 

I" (h, W) = wZ”~ - I,” = J/Z:, J = Z,‘Z; - Z,‘Z,’ 

Since I,’ > 0, we need to prove that J<O. From (6.1) and (6.3) we get that 
in region G1 
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AS in Sect. 6.1, we introduce uf = 24 @rh vi = 8 Oi+rt) and we pass to an integration 
over a square. Using the reiatim Vlu, - %% = 9 (us - ia&. we obtain 

(6.4) 

We tmafbrm the numerattx of the in&grand to 

A = -&a + A:, - 2+, Atj = (I+~) [+ - (fij*) 

Further, we have 

and an analogo~ formula for 4,. Since (~8 - v~)u~ = (2’ - vs)u,, 

Hence it follows that J < 0, as was required. 
6. 3. Behavior of k(h) in region Gp . Similarly to Sect. 6.2, 

in & we consider the equation 

f(h, J4 = li3l; (h) - I, (ha) = 0 (6.5) 

for -=<h<h,. 
L e m ma 2. If F (h, w) = 0 at some pofnt k E (-~a, &), then I” (A, 

w) < 0 at this point. 
This lemma is proved below. As in Sect. 6.2, from it& follaws that for each w 

we can find no more than cue @iat on Uerval (-a,, kc) at which 1’ (h, W) = & 
if such a point is found, then I (k, w) has a nondegenerate maximum at it and as w 
vartea this maxfrxxtm is displaced and can vanish only at point ,h,. 

Let us consider the bchavicx of f (h, W) at the endpoints of interval ( -b, &) . 



905 

Obviously, 1 (h, w) -+ -0a as h -+ --aD ami 1 (h,, WI) = 0, WhGrG WI = 

12 w 11, (h,). Similariy to Sect. 6.2 it cart be shown that when w = w, 
I: 2p, the directia, of the vertical tangent at point hc is changed: I’ {h, w) --c 

+oo as h-+h, - 0, if w < ws, and I’(h, w) -+ -oo as h + h, 
- 0, if w > to, . A finite derivative f’ (h,, w) > 0 exists whGn to, - ws. 

The chaxactu of the evolution of the roots of E& (6.5) as w varier is determined 
by the relation between w, and to,. If ut, < ws, then a) w varier&G graph 
of 1 (& w) changes as shown in Fig. 5 (the middle cum cormponds to to, < 

w < w& The points of the graph are Wsed upward as w grows. Thtrt are no roots 
whur w<w, . Forall w>wI Eq. (6.3) has P single root on (--m, h,! 
and at it I’ (h, w) > 0. 

Fig. 5 Fig. 6 

If to, > ut, t thtn as w varied the graph of l(hv w) cbangea as &own in 
Fig. 6. For w clae to lo,, w > w, , the fun&cm 1 (h, w) has a single nondeg- 
enerate maximum and (6.5) has no roots. As w fn&reartt tfie points of the graph are 
raWi upwud. A double root at point h = hd appears for some W = W& Wr < 

W,j < Wz- For Wd < W C ur, there are two moia on (-00, &), lying on differ- 
ent tides of point hd; to the left of them I’ (h, w) > 0 and to the right, 1’ (h, 
w) (0. when w = w, the mot on the right falls into point h,; for w > 
to1 a singly root exists and I’ (h, w) > 0 at it. If w, = w,, then for w > 

wl a tingle mot ufsts and f’ (h, w) > 0 at it. 
Now fur any h E (-00, he) we intro&c~ w = k (ri). Sirnilatiy to Sect. 

6.2 we obtain 

k’ (h) = - I’ (h, w) I I, (h), k” (h) == - (I” (h, w) t_ 

B’ (h)li (h)) / fz (h) 

If WI < wl, tha by the preceding the qmntitiy k’ (la) is negative and k’ (h) 
+-00 as h+Ir, - 0. If WI > w,, t&n k’ (h) tt pwitivc for 
h > h& ft negative for h(hd , andvanishafor h=hd; however, k” 
(hd)>O; k’(h)++ao 8t h+h,-0. ff ur,=y’s,fhkCLltWu~~fy 
k’ (h) is negative and tends to a finite negative Ifsnit as * E - 0. In all 
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c-9 k (k) + +oo as h-t -co. Thus, for q< w,, Wl> W$ 

and w, = w, the function k (k) behaver as deecribed in parts Al, A!2 and 
A* , ~HMM.I~, of -rem I. 

Lemma 3. Thecases 10~ < w,, w, > w, and q = w, a= realized 
if, respectively, a/S>&, a/B<& 
quantity & ha, been inwced fn Sect, 3, 

and a/@=&, where the 

Thut, tbeaNert&B of Theorem 1 concerning the behavior of k (h) in region 
Gr an: valid. Lemms 3 is pmed -b&ow. 

Proof of Lemma 2. Since i<<O, by~~~~~~rn~~wenetd 
toprovethat J>O. The expre&u~ for p in region & diffw from tbc expm - 
&cm for p in regim GJ. (see (6.1)) by the sign before the radicai; themfore, the 
expressfaa for J is obtained from (6.42) by chan@ng the signs before the radicals. 
Obviously, 1> 0, as required. 

Proof of Lemma 3, U~g~ed~~~of utl and w,, werewritethe 
relation wI = W) in the form 

Here the fhnctions I,, z (he) are determhed by formu+ (6.3) into which we need to 
subsfftute p = p, (k,, cp). From (6.1) it follows that 

Then (6.6) can be rewritten as 

The integral in (6.8) is taken with the aid of the &W.Wkn tg ($#Z) = 8 ad (6. S) 
is reduced to 

C-qu=~y, w, I= w* when dS = E* l It can be vcrifkd that WI < ~8 and 

ml 3 gs when u//f > 6, and a/B < b * lt2$ptively, as was apsrted. 
6, 4. Relative disposition of the characteristic 

points on the graphs. To~~~~~f~f Thaoramlweneed to 
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Tlte other ftlewawes are proved similarly. 

The at&or than& V, I. AmoPd for ruggestiag the topic, for attcstiar. to the work 
andforremuk 
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